A construction of Hadamard matrices from BIBD (2k2-2k+1, k, 1)
نویسندگان
چکیده
It is shown that the existence of a BIB design with parameters v = 2k − 2k+1, b = 2v, r = 2k, k, λ = 1 implies the existence of Hadamard matrices of orders 4v and 8vt, where t is an integer for which an orthogonal design of order 4t and type (t, t, t, t) exists.
منابع مشابه
Some new results of regular Hadamard matrices and SBIBD II
In this paper we prove that there exist 4—{k2; 1/2k(k—1); k(k—2)} SDS, regular Hadamard matrices of order 4k2, and SBIBD(4k2, 2k2 + k, k2 + k) for k = 47, 71, 151, 167, 199, 263, 359, 439, 599, 631, 727, 919, 5q1, 5q2N, 7q3, where ql, q2 and q3 are prime power such that ql ≡ 1(mod 4), q2 ≡ 5(mod 8) and q3 ≡ 3(mod 8), N = 2a3bt2, a, b = 0 or 1, t ≠ 0 is an arbitrary integer. We find new SBIBD(4k...
متن کاملExistence of SBIBD(4k2, 2k2±k, k2±k) and Hadamard matrices with maximal excess
It is shown that SBIED(4k 2 , 2Jc 2 ± k, P ± k) and Hadamard matrices with maximal excess exist for qs,q {q:q 1 (mod 4) is a prime power}, + 1, g the length of a Golay sequence}. There a proper n dimensional Hadamard matrix of order (4k2)n. Regular symmetric Hadamard matrices with constant diagonal are obtained for orders 4k2 whenever complete regular 4-sets of regular matrices of order k 2 exist.
متن کاملHadamard matrices of order 36 and double-even self-dual [72,36,12] codes
A balanced incomplete block design (BIBD) [1] with parameters 2-(v, b, r, k, λ) (short 2-(v, k, λ)) is a pair (V,B) where V is a v-set (elements are called points) and B is a collection of b k-subsets (elements are called blocks) of V such that each point is contained in exactly r blocks and any pair of points is contained in exactly λ blocks. A Hadamard matrix of order n is an n × n (1,−1)-mat...
متن کاملCharacterization of Bijective Discretized Rotations
A discretized rotation is the composition of an Euclidean rotation with the rounding operation. For 0 < α < π/4, we prove that the discretized rotation [rα] is bijective if and only if there exists a positive integer k such as {cosα, sinα} = { 2k + 1 2k2 + 2k + 1 , 2k + 2k 2k2 + 2k + 1 } The proof uses a particular subgroup of the torus (R/Z).
متن کاملA series of Siamese twin designs intersecting in a BIBD and a PBD
Let p and 2p − 1 be prime powers and p ≡ 3 (mod 4). We describe a construction of a series of Siamese twin designs with Menon parameters (4p, 2p − p, p − p) intersecting in a derived design with parameters (2p − p, p − p, p − p − 1), and a pairwise balanced design PBD(2p − p, {p, p − p}, p − p − 1). When p and 2p − 1 are primes, the derived design and the pairwise balanced design are cyclic. Fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 26 شماره
صفحات -
تاریخ انتشار 2002